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The general approach for describing and designing complex hierarchical

icosahedral structures is discussed. Structural models of icosahedral carbon

nanoparticles in which the local arrangement of atoms is virtually identical to

that in diamond are derived. It is shown that icosahedral diamond-like particles

can be transformed into onion-like shell structures (and vice versa) by the

consecutive smoothing (puckering) of atomic networks without disturbance of

their topological integrity. The possibility of coherent coexistence of icosahedral

diamond-like core with onion shells is shown.

1. Introduction

Regular structures need not be obligatory crystalline (Mackay,

1975). The most striking example of such structures is the

multilayer icosahedral packing (Mackay, 1962). It has a defi-

nite structure, which is not that of a crystal nor that of a

molecule; it is not one of the space groups (or even point

groups) listed in International Tables for Crystallography

(2005); it is not a twin (although it could be described in terms

of twinning). In the last decade, many new unusual structures

have been reported. When encountering ordering of types

unusual for classical crystallography, many authors express

their surprise in such terms as ‘magic’, ‘unprecedented’,

‘unique’, ‘puzzling’, ‘exotic’, ‘phantasmagorical’ etc. Let us

mention only a few examples: exotic close packings in small-

sized clusters of colloidal microspheres (Manoharan et al.,

2003), new families of magic clusters (Rossi et al., 2004),

unexpected and geometrically unprecedented close-packed

clusters (Tran et al., 2004), exotic noncrystalline helices and

spiral-structured wires (Gülseren et al., 1998), exotic structures

of tetrahedral semiconductors (Crain et al., 1995), phantas-

magorical fulleroids (Dress & Brinkmann, 1996; Delgado

Friedrichs & Deza, 2000) etc.

We contend that the structures of nanoparticles are not

obligatory the small relaxed cut-offs of crystalline structures.

Their structures may have no relevance at all to space groups

listed in International Tables for Crystallography (2005). We

suppose that unusual structures of real nanoparticles have

idealized prototypes in non-Euclidean spaces like an ideal

infinite crystal serves as an idealization of a real crystal, with

only one exception: their idealized ‘parent’ structures may not

necessarily exist in the three-dimensional Euclidean space.

There is nothing bad that the idealized structure as a whole

cannot be embedded into Euclidean space. Its fragments

inherit partially the non-Euclidean symmetry which becomes

hidden. Highly symmetrical idealizations should be chosen

either in symmetrical spaces of positive or negative curvature,

or in projective spaces, or more generally, in a certain fibre

space.

Structural inhomogeneity and coherent coexistence of

fragments are characteristic of structures of nanosized par-

ticles. Spatially inhomogeneous structures, for which the local

short-range order slightly differs from the short-range order of

one of the stable or metastable structural modifications or one

of the non-crystallographic packings, whereas different frag-

ments are coherently joined into a whole, should exist in the

nanoworld. Here we show that icosahedral carbon nano-

particles in which the local arrangement of atoms is virtually

identical to that in diamond can be formed in the nanometre

range. They can be transformed reversibly into onion-like

shell structures without disturbance of their topological

integrity. An icosahedral diamond-like core can coexist

coherently with onion shells. The general principle that

governs the formation of such structures takes as a basis the

non-Euclidean geometry.

Although nanodiamonds have long been the subject of the

close attention of researchers, the question as to their struc-

ture remains open. Diamond nanoparticles are not small-sized

diamond crystals. For example, the detonation carbon par-

ticles consist most probably of a diamond-like core coated

with shells having an onion-like structure with graphite

inclusions (Aleksenskii et al., 1999). Recently, the structural

properties of nanodiamond particles synthesized by deton-

ation and the products of their transformation into carbon

onions via vacuum annealing have been studied by various

experimental techniques (Mykhaylyk et al., 2005). It has been

shown that the detonation nanodiamond particles have

a composite core-shell structure comprising an ordered

diamond core of ~3 nm in size covered by a partially disor-

dered outer shell of ~0.8 nm. The transformation of the

nanodiamond into carbon onion proceeds from the amor-

phous outer shell of the particle inwards towards the diamond



core. A reconstruction of C atoms located in the outer shell

leads to bonding similar to those in nanocrystalline graphite.

The observed structure was comparable with the structure of

the bucky diamond clusters (Raty et al., 2003; Raty & Galli,

2003). The ab initio calculations showed that at ~3 nm the

reconstructed surfaces become more reasonable, thus

providing an atomistic structural model based on the topology

of a diamond core surrounded by a fullerene-like carbon

network.

Fivefold symmetry in diamond has been observed experi-

mentally by a number of researchers (Bühler & Prior, 2000;

Son & Chung, 2004). The icosahedral morphology was inter-

preted as a result of multiple twinning of cubic crystals. It was

noted that, among several forms of these multiple twins, there

exist almost perfect icosahedra. The fivefold symmetry clearly

manifests itself in the electron diffraction patterns. Some

larger particles had semi-coherent boundaries but the small

particles of several nanometres in size seemed to have fully

coherent interfaces.

Recently, structural models of icosahedral diamond nano-

particles compatible with onion-like structures were devel-

oped (Shevchenko & Madison, 2006a,b; Shevchenko et al.,

2006). Different diamond-like structural fragments in such

particles are coherently joined into a whole so that the local

arrangement of atoms is universally tetrahedral (not only

inside the fragments but also at their interfaces) and virtually

no different from that in the diamond. The central part of

particles is similar to that of compact carbon clusters with

tetrahedral bonding and icosahedral symmetry (Zeger &

Kaxiras, 1993). In order to explain the special features of

icosahedral nanoparticles, we propose the general approach

based on applying the cut-and-project procedure to certain

parent structures originally devised in elliptical space.

2. Constructing icosahedral packings: general
procedure and applications

Let us demonstrate how an icosahedral diamond-like nano-

particle can be constructed if it is treated as a nanostructure

with coherent boundaries and is composed of insignificantly

distorted fragments of diamond and lonsdaleite. The

geometric principles used for assembling such structures are

based on the local approach (Shevchenko et al., 2004, 2005).

Within this approach, nanoparticles with coherent boundaries

in the general case are assembled from a limited set of building

blocks determined by the fundamental manifolds and the

principles of assembling are governed by the topological

properties of a fibre bundle. The great diversity of ‘unusual’

structures can be obtained by mapping or projecting frag-

ments of highly symmetrical structures from different non-

Euclidean spaces into the three-dimensional Euclidean space

or mapping these fragments onto curved manifolds embedded

into the Euclidean space. In particular, the substructures of

polytopes, i.e. regular tilings of the three-dimensional space

with positive curvature, are of special interest. They may be

considered as regular tilings of the three-dimensional

Riemannian space or (being embedded into four-dimensional

Euclidean space) as four-dimensional analogues of Plateau

polyhedra or as abstract group manifolds with corresponding

Coxeter groups (Coxeter, 1973).

An icosahedron can be assembled by joining 20 slightly

distorted regular tetrahedra face to face. This simplest

consideration leads to the classical concept of multiple twin-

ning widely used when describing the diamond-like structures

(Bühler & Prior, 2000; Shenderova et al., 2003; Son & Chung,

2004). The Euclidean space may not be filled by ideal tetra-

hedra or icosahedra but there exists the closest packing of

ideal tetrahedra in the curved space – namely the {3,3,5}

polytope. Cutting various fragments from it and projecting

them with slight distortions into the Euclidean space, one can

obtain a lot of finite packings with almost icosahedral

arrangement of atoms everywhere (e.g. Sadoc & Mosseri,

1982; Kléman, 1989; Lord & Ranganathan, 2001; Lord et al.,

2006). In the general case, each tetrahedron may suffer unique

distortions during this procedure, so that the true icosahedral

symmetry of the packing as a whole may be hidden or lost. The

formation of an icosahedral packing is not at all an accidental

cyclic twinning of nearly suitable building blocks. Only

simplest icosahedral structures may be considered as cyclic

multiple twins. We are sure as well that it is not enough for

shells to have suitable sizes like Russian dolls to build up the

regular multishell structures. In the general case, there exist

rigorous assembling rules, which are strictly predefined by the

true group-theoretical equivalence of corresponding blocks in

the parent structure, which may be not realizable in the

Euclidean space but does exist in a certain curved (or

projective) space.

As a special case, an icosahedron built up of 20 tetrahedra

may be obtained as a result of the cut-and-project procedure

by choosing the packing origin in one of the vertices of

polytope {3,3,5} and confining oneself to cutting no more than

nearest neighbours. But the abilities of the approach will not

rest by designing just another ordinary multiple twin. For

instance, the rod-like and zigzag structures spatially com-

patible with interpenetrating multilayer icosahedral packings

may be designed by projecting the polytope fragments onto

the Clifford surfaces. As known, the Clifford surfaces are

special kinds of manifolds of zero Gaussian curvature defined

in the elliptical space. Corresponding surfaces in the Euclid-

ean space are cylinders. Thus, the structures of multilayer

nanotubes and ‘magic’ nanowires may be designed.

New packings with nearly icosahedral motif may be derived

using the generalized cut-and-project procedure. First, one can

increase the number of shells in the packing up to the equa-

torial cut-off of the polytope. Second, one can shift the origin

of the structure being projected from vertex towards face or

cell centre in the curved space. Third, one can perform the

geodesic design of highly symmetrical structure in the curved

space and only afterwards apply the cut-and-project pro-

cedure. Besides, one can increase the complexity of the non-

Euclidean packing by taking multiple copies of the polytope in

the same way as face-centred or body-centred cubic lattices

may be derived from a simple cubic lattice in the Euclidean

space.
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Another way is to fill the fundamental regions of the non-

Euclidean structure by slightly distorted multiple copies of

some Euclidean packing which leads to the ‘decorated’ poly-

tope. For example, every 120 tetrahedra in the structure of

polytope {3,3,5} may be considered in curved space as a full

analogue of the unit cell of a crystal. Then the tetrahedrally

shaped fragments of some cubic crystal lattice may be cut out

and projected into the unit tetrahedron of the polytope {3,3,5}

so that the face-to-face boundaries between nearest ‘decor-

ated’ tetrahedra would reproduce the atomic structure of the

�3 twin boundaries in cubic crystals. In the curved space, the

tetrahedral fragments should be multiplied by the generators

of the Coxeter group [3,3,5]. After that, the fragments of the

decorated polytope should be projected back into the

Euclidean space resulting in a family of complex icosahedral

diamond-like shell packings.

Constructed in such a way, diamond nanoparticles have a

shell structure and a nearly spherical shape. In the simplest

case (Shevchenko & Madison, 2006a), each shell contains 20k2

atoms (20, 80, 180, 320, 500, . . . ), and the particle as a whole

consists of 20k(k + 1)(2k + 1)/6 atoms (20, 100, 280, 600,

1100, . . . ), where k is the total number of shells. Special cases

of this ‘magic’ series are provided by endohedral nanodrops of

the (H2O)100 water, which were found in cavities of giant

oxomolybdate clusters (Müller et al., 2003), and the (H2O)280

Dzugutov clusters (Doye et al., 2001). These numbers are also

characteristic of carbon onions (Terrones et al., 2003). Icosa-

hedral diamond-like particles can undergo reversible trans-

formation into onions by shell smoothing and backward

puckering without any jumps of atoms between shells or

migrations of atoms within intershell spacings. Let us illustrate

this.

Fig. 1 shows the consecutive shells of an example of the

icosahedral diamond-like nanoparticle. Its structure may be

described either in terms of building units (Shevchenko &

Madison, 2006a) or in terms of closed shells (Shevchenko &

Madison, 2006b). In terms of building units, the core of this

particle consists of 20 atoms forming a regular dodecahedron.

Columns of ‘barrels’ are attached to each of its faces. The

number of barrels in each column is defined by the frequency

parameter of the geodesic design of the polytope. In general,

each column should be terminated by dodecahedra from both

sides. Each dodecahedron in the structure of an arbitrary

icosahedral diamond-like nanoparticle corresponds to a

certain vertex of the polytope {3,3,5}, whereas columns of

barrels correspond to its edges. Dodecahedra and barrels form

a scaffold. The remaining space should be regularly filled with

fragments of diamond and lonsdaleite. The lonsdaleite frag-

ments fill the surfaces corresponding to the faces of the

polytope in the curved space. The diamond fragments fill the

volume inside the tetrahedra corresponding to the cells of the

polytope. In the simplest case, there is only one central

dodecahedron and twelve columns of barrels in an icosahedral

diamond-like nanoparticle (Shevchenko & Madison, 2006a).

Another example has been reported elsewhere (Zeger &

Kaxiras, 1993).

A generalized cut-and-project procedure makes it possible

to design a lot of structures characterized by almost perfectly

tetrahedral bonding of atoms and icosahedral point symmetry.

The analogous structures with tetrahedral or dihedral point

symmetry and almost icosahedral motif are possible, too.

Similarly, related structures of multishell nanowires with

hidden icosahedral motif may be designed. An example of the

diamond-like helical structure has been presented recently

(Shevchenko & Madison, 2006a). On the one hand, the

arrangement of nearest neighbours in that structure is almost

like that in a diamond crystal and, on the other hand, it has the

overall symmetry characteristic of the Boerdijk–Coxeter helix.

All these structures (multishell spherical particles and wires)

are structurally compatible. It means they can interpenetrate

each other and may be joined together coherently according

to the rules of the parent structure existing in the curved

space. Let us emphasize that such complex interpenetrating
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Figure 1
Formation of icosahedral nanoparticles with coherent boundaries. The
consequent shells (from top to bottom) consist of 20, 80, 180, 320 and 500
atoms, respectively (view along the twofold axis of the icosahedron). Left:
shells forming the diamond-like particle. Right: shells forming the onion-
like particle. Both sets of shells may be reversibly transformed into each
other by smoothing and puckering of atomic networks. Combining shells
from both sets results in the composite icosahedral core-shell particle
with diamond core coherently joined with an onion shell.



coherent nanosized structures are not twins in the classical

meaning of this word.

In terms of closed shells, there are puckered and smoothed

shells. Inserting the puckered consecutive shells (Fig. 1, left)

into another one obtains the diamond-like particle. The same

shells but smoothed (Fig. 1, right) form nested fullerene–

onion. Both sets of shells are equal topologically and may be

reversibly transformed by smoothing and puckering of atomic

networks. It should be emphasized that, in the framework of

the mechanism under consideration, the transformation of an

icosahedral diamond-like nanoparticle into a shell nano-

particle is not accompanied by breaking of any chemical bonds

and leads only to a change in their character and direction. In

terms of atomic orbitals, the reversible structural transfor-

mations in carbon nanoparticles correspond to dehybridiza-

tion and rehybridization of the bonds. The topological

integrity of the network as a whole remains unchanged.

Another possibility is the coherent coexistence of diamond-

like core with onion-like shells. Let us suppose that outer

shells undergo the smoothing transformation, whereas the

inner core remains diamond-like. This case corresponds to the

composite icosahedral core-shell particle without any grain

boundaries (in the classical sense) between diamond-like and

graphite-like fragments. It is the special type of ordering

specific for the nanostate, which cannot be explained in clas-

sical terms of twinning or polysyntaxy.

Thus, the structures of icosahedral diamond-like nano-

particles can simultaneously involve fragments with specific

features of diamond, lonsdaleite, graphite and carbon onions

joined coherently. They can serve as a good model accounting

for the structure of detonation nanodiamonds, as well as for

the structural transformations of nanodiamonds into onion-

like carbon structures and vice versa (Aleksenskii et al., 1999;

Banhart et al., 1997; Tomita et al., 2000, 2002; Roddatis et al.,

2002; Ponomareva & Chernozatonskii, 2003; Banhart, 2004;

Mykhaylyk et al., 2005).

3. Concluding remarks

We have discussed the general approach for describing and

designing non-crystallographic packings based on the cut-and-

project procedure applied to highly symmetrical non-Euclid-

ean structures and especially to regular polytopes. The

geodesic design of fundamental regions in curved space or

filling them by other fragments (repeated cut-and-project

procedure) opens the way to design the most general hier-

archic structures. The most vivid examples of such ‘unusual’

structures are those of nanoparticles although the true

chemical or physical nature of the subunits being packed

should be considered to be secondary.

The icosahedral packings were often described as multiple

twins. We consider the icosahedral packing as a united whole,

as a fragment of the corresponding non-Euclidean packing.

Various parts of the real structure correspond to certain parts

of the parent non-Euclidean structure and, moreover, they are

assembled by rules, which in turn have prototypes among the

group operations of the parent structure. From this point of

view, the atomic displacements in various distant parts of the

‘multiply twinned’ nanoparticle should be concerted. Like the

atomic displacements in neighbouring unit cells of a crystal

define the structural transitions between macroscopic crys-

talline phases, the displacements in fundamental regions of the

corresponding non-Euclidean parent structure serve the

models of structural transitions in nanoparticles. The

diamond-to-onion transition is considered as an example.

Let us suppose that the part of the parent structure in

curved space underwent the structural transition, whereas

another part did not. After projecting both parts into

Euclidean space, one gets the nanosized analogue of the

polysyntactic intergrowth (or twin) with curved coherent

interfaces. The coherent coexistence of fragments in composite

core-shell carbon particles represents an example of such

intergrowth. In a general case, the coherent boundary should

be the minimal surface of a definite genus.

The proposed approach has pure geometrical nature. It

makes it possible to design quite realistic complex structures

without any reference to the chemical nature of packed

subunits or chosen interacting potential, as well as before any

fitting or minimization procedure.
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Kléman, M. (1989). Adv. Phys. 38, 605–667.
Lord, E. A., Mackay, A. L. & Ranganathan, S. (2006). New

Geometries for New Materials. Cambridge University Press.
Lord, E. A. & Ranganathan, S. (2001). Eur. Phys. J. D15, 335–343.
Mackay, A. L. (1962). Acta Cryst. 15, 916–918.
Mackay, A. L. (1975). Izvj. Jugosl. Centr. Kristallogr. (Zagreb), 10,

15–36.
Manoharan, V. N., Elsesser, M. T. & Pine, D. J. (2003). Science, 301,

483–487.
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